Heat shock-induced thermoprotection of action potentials in the locust flight system.
نویسندگان
چکیده
There is increasing evidence that heat shock (HS) has long-term effects on electrophysiological properties of neurons and synapses. Prior HS protects neural circuitry from a subsequent heat stress but little is known about the mechanisms that mediate this plasticity and induce thermotolerance. Exposure of Locusta migratoria to HS conditions of 45 degrees C for 3 h results in thermotolerance to hitherto lethal temperatures. Locust flight motor patterns were recorded during tethered flight at room temperature, before and after HS. In addition, intracellular action potentials (APs) were recorded from control and HS motoneurons in a semi-intact preparation during a heat stress. HS did not alter the timing of representative depressor or elevator muscle activity, nor did it affect the ability of the locust to generate a steering motor pattern in response to a stimulus. However, HS did increase the duration of APs recorded from neuropil segments of depressor motoneurons. Increases in AP duration were associated with protection of AP generation against failure at subsequent elevated temperatures. Failure of AP generation at high temperatures was preceded by a concomitant burst of APs and depolarization of the membrane. The protective effects of HS were mimicked by pharmacological blockade of I(K+) with tetraethylammonium (TEA). Taken together, these findings are consistent with a hypothesis that HS protects neuronal survival and function via K+ channel modulation.
منابع مشابه
Anoxia induces thermotolerance in the locust flight system.
Heat shock and anoxia are environmental stresses that are known to trigger similar cellular responses. In this study, we used the locust to examine stress cross-tolerance by investigating the consequences of a prior anoxic stress on the effects of a subsequent high-temperature stress. Anoxic stress and heat shock induced thermotolerance by increasing the ability of intact locusts to survive nor...
متن کاملEffects of heat stress on axonal conduction in the locust flight system
Pretreatment of tissues or whole organisms with high, sublethal temperatures (heat shock) induces thermotolerance to normally lethal temperatures. It is of interest whether heat shock induces protection of neuronal function at normally lethal temperatures by investigating effects of heat shock on the temperature sensitivity of neuronal parameters in the locust flight system. The rhythm frequenc...
متن کاملA role for the cytoskeleton in heat-shock-mediated thermoprotection of locust neuromuscular junctions.
A prior hyperthermic stress (heat shock) can induce thermoprotection of neuromuscular transmission in Locusta migratoria extensor tibiae muscle measured 4 h after the onset of the heat shock. It is not clear what effect an acute hyperthermic stress may have on the nervous system's ability to tolerate thermal stress, that is, before increased expression of heat-shock proteins. We found that over...
متن کاملRole for calcium in heat shock-mediated synaptic thermoprotection in Drosophila larvae.
Chemical synaptic transmission is the mechanism for fast, excitation-coupled information transfer between neurons. Previous work in larval Drosophila has shown that transmission at synaptic boutons is protected by heat shock exposure from subsequent thermal stress through pre- and postsynaptic modifications. This protective effect has been, at least partially, ascribed to an up-regulation in th...
متن کاملOctopamine mediates thermal preconditioning of the locust ventilatory central pattern generator via a cAMP/protein kinase A signaling pathway.
We investigated the role of biogenic amines in generating thermoprotection of the ventilatory motor pattern circuitry in Locusta migratoria. Levels of octopamine (OA) and dopamine (DA) in the metathoracic ganglion decreased during heat stress. We measured the thermosensitivity of central pattern generation in response to a ramped increase of temperature in semi-intact preparations. OA, DA, and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurobiology
دوره 49 3 شماره
صفحات -
تاریخ انتشار 2001